What Is CLSI AST ORWG?

The CLSI AST Outreach Working Group (ORWG) is part of the CLSI Subcommittee on Antimicrobial Susceptibility Testing (AST) and was established in 2015. The formation of the working group originated in a desire to efficiently convey information regarding contemporary AST practices, recommendations, and resources to the clinical microbiology community.

Members:
- Janet A. Hindler (Co-Chairholder), UCLA Health System, USA
- Audrey N. Schuetz (Co-Chairholder), Mayo Clinic, USA
- April Abbott, Deaconess Health System, USA
- Stella Antonara, Nationwide Children’s Hospital, USA
- Marcelo F. Galas, National Institute of Infectious Disease, Argentina
- Violeta J. Rekasius, Loyola University Medical Center, USA
- Romney M. Humphries, UCLA Health System, USA
- Nicole E. Scangarella-Oman, GlaxoSmithKline, USA
- A. Beth Prouse, Peninsula Regional Medical Center, USA
- Lars F. Westblade, Weill Cornell Medical College, USA

Goals:
- Educate practicing clinical microbiologists and health care professionals about AST practices and recommendations.
- Provide resources to facilitate individuals in their understanding and implementation of CLSI AST recommendations.

What can you learn from CLSI AST News Updates?

Through periodic newsletters, the CLSI AST ORWG will direct you to educational materials to help you learn more about the CLSI Subcommittee on AST (CLSI AST SC) and the recommendations published in CLSI AST documents. Information will be provided through webinars, annotated presentations, self-study programs, case studies, articles, and more. A “hot topic” in antimicrobial resistance will be included in each issue of the newsletter. Educational materials will be provided by ORWG members and guest authors.

In this inaugural issue, we explain the role of the CLSI AST SC and the structure of CLSI AST SC meetings. We also provide a description of the types of information presented at these meetings and links to materials presented at past meetings. Through these newsletters, you will gain insight into the proceedings of the CLSI AST SC, which will help you determine if you might be interested in contributing to these activities.
What is the CLSI AST Subcommittee and where and when does it meet?

- The CLSI AST SC is a group of volunteers representing the government, industry, and the professions that researches contemporary issues in AST and, through a consensus mechanism, constructs the recommendations included in CLSI AST documents.
- The CLSI AST SC is comprised of microbiologists, infectious diseases physicians, pharmacists, public health specialists, and others. There is one appointed chairholder, a vice-chairholder, 12 appointed voting members, 12–20 appointed advisors, and an unlimited number of reviewers.
- Meetings are held twice a year (January and June), generally in cities near the East or West coasts (warm weather venue in January!)
- The meeting begins Saturday evening with a workshop (see CLSI AST SC Meeting Educational Workshops, later in this issue) and runs through Tuesday afternoon.
- The chairholder appoints working groups to address specific AST issues that need attention. Issues might be raised by an appointed member of the CLSI AST SC, a reviewer, or someone from outside CLSI.
- Working groups assemble at the face-to-face meetings and also meet by conference call multiple times between meetings.
- Final voting occurs at plenary sessions during which all topics are reviewed.
- CLSI AST SC meetings are open to interested individuals. Anyone can volunteer information to guide an issue under discussion.
- To learn more about upcoming or past meetings, please click here.

How is content assembled for the face-to-face CLSI AST meetings?

The process of compiling CLSI AST SC meeting materials is:

- Approximately one month before each face-to-face meeting, those wishing to make recommendations or discuss an issue must request time to do so and submit supporting materials. Some of the materials are obtained from working group conference calls that take place between face-to-face meetings.
- An agenda book is constructed from the materials and shared with meeting participants two to three weeks before the meeting.
- Meeting participants review the materials before meeting attendance.
- During working group and plenary sessions, any needed changes to the AST documents are considered, along with material to support these changes, and a vote is taken. All decisions are made through the consensus mechanism.
- Chairholders of working groups submit a summary of material presented during the meeting.
- CLSI posts these summaries for public access here.
- Currently, meeting materials from January 2010 through June 2015 are accessible.

Interested in becoming a CLSI volunteer? Learn more here.
Updated CLSI AST Documents Are Here!
So what’s new?

M100S—Performance Standards for Antimicrobial Susceptibility Testing, 26th Edition

- **New breakpoints:**
 - Ceftolozane-tazobactam for Enterobacteriaceae and Pseudomonas aeruginosa
 - Oritavancin, tedizolid, and talavancin for staphylococci, enterococci, β-hemolytic streptococci, and viridans streptococci

- **Updated recommendations:**
 - Staphylococcus pseudintermedius
 - Cefazolin with E. coli, Klebsiella pneumoniae, and Proteus mirabilis
 - Fluoroquinolones with Salmonella spp.

- **Expanded definitions:**
 - Surrogate agent, equivalent agent, routine test, supplemental test, screening test

- **Updated intrinsic resistance tables**

- **New epidemiological cutoff values (ECVs):**
 - Azithromycin for Shigella flexneri and Shigella sonnei

M45—Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd Edition

- The M45 guideline underwent a major overhaul. Several new and updated recommendations were introduced throughout the document, derived from extensive literature review, in vitro testing, and the clinical expertise of the working group. Key updates include:

- **New organisms:**
 - Aerococcus spp.
 - Micrococcus spp.
 - Gemella spp.
 - Rothia mucilaginosa
 - Lactococcus spp.

- **Updated recommendations:**
 - Coryneform and Bacillus-related genera
 - Campylobacter jejuni/coli disk diffusion method and addition of disk breakpoints for erythromycin, ciprofloxacin, and tetracycline
 - HACEK group, including use of alternative test media

 Additionally, new or modified breakpoints and treatment comments were added for several antimicrobial agent/organism combinations based on contemporary data available.

NEW for 2016!

Now you can access the microbiology community’s most trusted resource for effective antibiotic selection and usage in multiple ways! For more information, click here.

M100 PLUS
Our Searchable XML-Based Version of M100
M100 PLUS provides full online access to M100, with added functionality and fast, easy data searching in a user-friendly electronic format.

M100 FREE
A Convenient Companion to the M100 Document
This complimentary, read-only version of the M100 document is available for fast online reference of key breakpoint data.

NEW!

M52—Verification of Commercial Microbial Identification and Antimicrobial Susceptibility Testing Systems, 1st Edition

The new M52 guideline provides recommendations for verification of US Food and Drug Administration–cleared identification and AST systems when adopting a new system or when making a change to an existing system. Some of the highlights include suggestions for:

- Designing the verification study and defining acceptance criteria
- Selecting isolates for testing (including numbers to test)

- Performing the verification
- Resolving discrepancies
- Preparing the verification report

Suggested postverification quality assurance activities are described, including:

- Review of unusual results
- Annual review of manufacturer’s instruction for use
- Correlation of in vitro test results with clinical findings
CLSI AST SC Meeting Educational Workshops

To coincide with the January and June CLSI AST SC meetings, the ORWG coordinates an Educational Workshop, normally held on the Saturday evening before the start of the AST working group meetings. Past workshops included topics such as pharmacokinetic-pharmacodynamic (PK-PD) data, AST devices, biofilms, antibiotic stewardship, and antibiotic surveillance.

The June 2015 Workshop was entitled “Antibacterial Therapy – New Drugs and Approaches” and included presentations on newly approved antimicrobial agents, current antimicrobial agents in development, and the future of antimicrobial agents development.

The January 2016 Workshop focused on “Emerging Molecular and Novel Methods to Detect Antimicrobial Resistance” and highlighted currently available methods, implementation in clinical trials, methods under development, and the role of next generation sequencing for the detection of antimicrobial resistance. The topic selected for the June 2016 Workshop is “Unusual Suspects – Resistance Concerns and Susceptibility Testing Among Less Common, but Noteworthy, Bacteria.”

The ORWG welcomes suggestions for future educational workshops!

Slides presented at past sessions can be found here.

Future CLSI AST Subcommittee Meetings!

June 2–7, 2016 – San Diego, California, USA
January 11–17, 2017 – Tempe, Arizona, USA
June 22–27, 2017 – Philadelphia, Pennsylvania, USA

Links to Resources for Antimicrobial Agents and AST

Click here for a list of websites containing information that might help you better understand antimicrobial agents and AST. The links point you to descriptions of antimicrobial classifications, antimicrobial resistance mechanisms, recommendations for AST, development of IQCPs (Individualized Quality Control Plans) for AST, guidelines for antimicrobial therapy, and more.

Carbapenem-Resistant Enterobacteriaceae (CRE) Educational Tools

Carbapenem-resistant Enterobacteriaceae (CRE) threaten health care systems throughout the world. The burden of disease in the United States due to CRE has been increasing, and the easy spread of these organisms within health care institutions presents many challenges to laboratorians, clinicians, pharmacists, and infection control practitioners.

The AST SC ORWG has developed an educational module to help you better understand contemporary CRE issues. Access this module at the link below.

Laboratory Detection of CRE

In the coming weeks, we will release additional educational tools including a self-study program to help you further assess your understanding of CRE. Stay tuned!
Resistance Hot Topic!

Transmissible colistin resistance

By Kurt Jerke, PhD, UCLA Postdoctoral Fellow

In recent years, there has been renewed use of the polymyxins (colistin and polymyxin B) to combat multidrug-resistant gram-negative bacteria. Resistance to the polymyxins is increasing among carbapenem-resistant Enterobacteriaceae, due to mutations acquired on the bacterial chromosome. Recently, a plasmid-borne colistin resistance gene, mcr-1, was described in an Escherichia coli isolated from an industrial pig farm in China. This report documented the first known instance of transmissible colistin resistance. The mcr-1 gene is similar to the gene encoding phosphoethanolamine transferases known to confer resistance to the polymyxins in other species, through lipid A target modification. Conjugation experiments demonstrated that colistin resistance (colistin minimal inhibitory concentration, 8 µg/mL) could be transferred from a resistant to a susceptible isolate of E. coli by the plasmid pHNSHP45, which harbors the mcr-1 gene. Furthermore, this plasmid was found to be stable in the native and transconjugated E. coli after 14 passages in the absence of colistin selection. This plasmid could also be transferred to Klebsiella pneumoniae and Pseudomonas aeruginosa isolates with relative ease. Retrospective analysis of bacterial isolates in China identified mcr-1-positive E. coli in pig and other meat sources dating back to 2011, as well as in E. coli and K. pneumoniae isolated from human clinical specimens. It is therefore concerning that mcr-1 could rapidly disseminate globally, rendering colistin ineffective for treatment of serious infections with multidrug-resistant Enterobacteriaceae. Indeed, since this initial report, the mcr-1 gene has been identified in isolates from Cambodia, Canada, Denmark, England, France, and Germany.
